BACKGROUND AND OBJECTIVE Obesity hypoventilation syndrome (OHS) causes hypercapnia which is often refractory to current therapies. We examine whether hypercapnia in OHS can be improved by a ketogenic dietary intervention.… Click to show full abstract
BACKGROUND AND OBJECTIVE Obesity hypoventilation syndrome (OHS) causes hypercapnia which is often refractory to current therapies. We examine whether hypercapnia in OHS can be improved by a ketogenic dietary intervention. METHODS We conducted a single-arm crossover clinical trial to examine the impact of a ketogenic diet on CO2 levels in patients with OHS. Patients were instructed to adhere to 1 week of regular diet, 2 weeks of ketogenic diet, followed by 1 week of regular diet in an ambulatory setting. Adherence was assessed with capillary ketone levels and continuous glucose monitors. At weekly visits, we measured blood gases, calorimetry, body composition, metabolic profiles, and sleep studies. Outcomes were assessed with linear mixed models. RESULTS A total of 20 subjects completed the study. Blood ketones increased from 0.14 ± 0.08 during regular diet to 1.99 ± 1.11 mmol/L (p < 0.001) after 2 weeks of ketogenic diet. Ketogenic diet decreased venous CO2 by 3.0 mm Hg (p = 0.008), bicarbonate by 1.8 mmol/L (p = 0.001), and weight by 3.4 kg (p < 0.001). Sleep apnoea severity and nocturnal oxygen levels significantly improved. Ketogenic diet lowered respiratory quotient, fat mass, body water, glucose, insulin, triglycerides, leptin, and insulin-like growth factor 1. Rebound hypercapnia was observed after resuming regular diet. CO2 lowering was dependent on baseline hypercapnia, and associated with circulating ketone levels and respiratory quotient. The ketogenic diet was well tolerated. CONCLUSION This study demonstrates for the first time that a ketogenic diet may be useful for control of hypercapnia and sleep apnoea in patients with obesity hypoventilation syndrome.
               
Click one of the above tabs to view related content.