LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pharmacogenomics with red cells: a model to study protein variants of drug transporter genes

Photo by nci from unsplash

The PharmacoScan pharmacogenomics platform screens for variation in genes that affect drug absorption, distribution, metabolism, elimination, immune adverse reactions and targets. Among the 1,191 genes tested on the platform, 12… Click to show full abstract

The PharmacoScan pharmacogenomics platform screens for variation in genes that affect drug absorption, distribution, metabolism, elimination, immune adverse reactions and targets. Among the 1,191 genes tested on the platform, 12 genes are expressed in the red cell membrane: ABCC1, ABCC4, ABCC5, ABCG2, CFTR, SLC16A1, SLC19A1, SLC29A1, ATP7A, CYP4F3, EPHX1 and FLOT1. These genes represent 5 ATPā€binding cassette proteins, 3 solute carrier proteins, 1 ATP transport protein and 3 genes associated with drug metabolism and adverse drug reactions. Only ABCG2 and SLC29A1 encode blood group systems, JR and AUG, respectively. We propose red cells as an ex vivo model system to study the effect of heritable variants in genes encoding the transport proteins on the pharmacokinetics of drugs. Altered pharmacodynamics in red cells could also cause adverse reactions, such as haemolysis, hitherto unexplained by other mechanisms.

Keywords: cells model; model study; red cells; drug; pharmacogenomics red

Journal Title: Vox Sanguinis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.