LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of center of rotation of angulation‐based leveling osteotomy on ex vivo stifle joint stability following cranial cruciate ligament transection and medial meniscal release with and without a hamstring load

Photo from wikipedia

Abstract Objective To evaluate the effect of center of rotation of angulation (CORA)‐based leveling osteotomy (CBLO) and hamstring load on stifle stability following cranial cruciate ligament transection (CCLx) and medial… Click to show full abstract

Abstract Objective To evaluate the effect of center of rotation of angulation (CORA)‐based leveling osteotomy (CBLO) and hamstring load on stifle stability following cranial cruciate ligament transection (CCLx) and medial meniscal release (MMR). Study design Ex vivo experimental study. Sample population Cadaver hind limb preparations (n = 7). Methods After instrumentation, constant quadriceps and gastrocnemius loads with an optional hamstring load in a 3:1:0.6 ratio were applied, and stifles were extended from fully flexed using an electrical motor during fluoroscopic recording. The recording process was repeated after each of CCLx, MMR and CBLO and the extracted landmark coordinates were used for calculation of cranial tibial translation (CTT) and patellar ligament angle (PTA). Results Mean initial tibial plateau angle was 28.1°: post‐CBLO the mean was 9.7°. Cranial tibial translation developed from 50° and 75° with CCLx and MMR respectively (p < .04, < .02) without hamstring loading. Hamstring loading mitigated CTT due to CCLx and delayed CTT until 120° for MMR (P < .02) in this model. CBLO prevented CTT, except at 140° without hamstring loading (P = .01). Similar results were seen for PTA, but CBLO curves were parallel to and lower than intact values at all tested angles (P < .04), consistent with induced effective joint flexion. Conclusion CBLO to a target tibial plateau angle of 10° largely eliminated CTT induced by CCLx and MMR. Hamstring loads of 20% quadriceps load improved stifle stability in this model. Impact Stifle stability following CBLO appears to be multifactorial and depends on meniscal integrity, joint angle, and hamstring strength.

Keywords: without hamstring; stability following; hamstring load; stability; cblo

Journal Title: Veterinary Surgery
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.