LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Long large character sums

Photo by cosmicwriter from unsplash

In this paper, we prove a lower bound for $\underset{\chi \neq \chi_0}{\max}\bigg|\sum_{n\leq x} \chi(n)\bigg|$, when $x= \frac{q}{(\log q)^B}$. This improves on a result of Granville and Soundararajan for large character… Click to show full abstract

In this paper, we prove a lower bound for $\underset{\chi \neq \chi_0}{\max}\bigg|\sum_{n\leq x} \chi(n)\bigg|$, when $x= \frac{q}{(\log q)^B}$. This improves on a result of Granville and Soundararajan for large character sums when the range of summation is wide. When $B$ goes to zero, our lower bound recovers the expected maximal value of character sums for most characters.

Keywords: character sums; chi; long large; character; large character

Journal Title: Mathematika
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.