LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

From ALE to ALF gravitational instantons

Photo by austindistel from unsplash

In this article, we give an analytic construction of ALF hyperkähler metrics on smooth deformations of the Kleinian singularity $\mathbb{C}^{2}/{\mathcal{D}}_{k}$ , with ${\mathcal{D}}_{k}$ the binary dihedral group of order $4k$… Click to show full abstract

In this article, we give an analytic construction of ALF hyperkähler metrics on smooth deformations of the Kleinian singularity $\mathbb{C}^{2}/{\mathcal{D}}_{k}$ , with ${\mathcal{D}}_{k}$ the binary dihedral group of order $4k$ , $k\geqslant 2$ . More precisely, we start from the ALE hyperkähler metrics constructed on these spaces by Kronheimer, and use analytic methods, e.g. resolution of a Monge–Ampère equation, to produce ALF hyperkähler metrics with the same associated Kähler classes.

Keywords: hler; hler metrics; hyperk hler; gravitational instantons; alf gravitational; ale alf

Journal Title: Compositio Mathematica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.