LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cohomology of generalized configuration spaces

Photo from wikipedia

Let $X$ be a topological space. We consider certain generalized configuration spaces of points on $X$, obtained from the cartesian product $X^{n}$ by removing some intersections of diagonals. We give… Click to show full abstract

Let $X$ be a topological space. We consider certain generalized configuration spaces of points on $X$, obtained from the cartesian product $X^{n}$ by removing some intersections of diagonals. We give a systematic framework for studying the cohomology of such spaces using what we call ‘twisted commutative dg algebra models’ for the cochains on $X$. Suppose that $X$ is a ‘nice’ topological space, $R$ is any commutative ring, $H_{c}^{\bullet }(X,R)\rightarrow H^{\bullet }(X,R)$ is the zero map, and that $H_{c}^{\bullet }(X,R)$ is a projective $R$-module. We prove that the compact support cohomology of any generalized configuration space of points on $X$ depends only on the graded $R$-module $H_{c}^{\bullet }(X,R)$. This generalizes a theorem of Arabia.

Keywords: configuration spaces; space; configuration; cohomology generalized; generalized configuration; bullet

Journal Title: Compositio Mathematica
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.