We prove that any skew-symmetrizable cluster algebra is unistructural, which is a conjecture by Assem, Schiffler and Shramchenko. As a corollary, we obtain that a cluster automorphism of a cluster… Click to show full abstract
We prove that any skew-symmetrizable cluster algebra is unistructural, which is a conjecture by Assem, Schiffler and Shramchenko. As a corollary, we obtain that a cluster automorphism of a cluster algebra ${\mathcal{A}}({\mathcal{S}})$ is just an automorphism of the ambient field ${\mathcal{F}}$ which restricts to a permutation of the cluster variables of ${\mathcal{A}}({\mathcal{S}})$.
               
Click one of the above tabs to view related content.