LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Successive minima and asymptotic slopes in Arakelov geometry

Photo from wikipedia

Let $X$ be a normal and geometrically integral projective variety over a global field $K$ and let $\bar {D}$ be an adelic ${\mathbb {R}}$-Cartier divisor on $X$. We prove a… Click to show full abstract

Let $X$ be a normal and geometrically integral projective variety over a global field $K$ and let $\bar {D}$ be an adelic ${\mathbb {R}}$-Cartier divisor on $X$. We prove a conjecture of Chen, showing that the essential minimum $\zeta _{\mathrm {ess}}(\bar {D})$ of $\bar {D}$ equals its asymptotic maximal slope under mild positivity assumptions. As an application, we see that $\zeta _{\mathrm {ess}}(\bar {D})$ can be read on the Okounkov body of the underlying divisor $D$ via the Boucksom–Chen concave transform. This gives a new interpretation of Zhang's inequalities on successive minima and a criterion for equality generalizing to arbitrary projective varieties a result of Burgos Gil, Philippon and Sombra concerning toric metrized divisors on toric varieties. When applied to a projective space $X = {\mathbb {P}}_K^{d}$, our main result has several applications to the study of successive minima of hermitian vector spaces. We obtain an absolute transference theorem with a linear upper bound, answering a question raised by Gaudron. We also give new comparisons between successive slopes and absolute minima, extending results of Gaudron and Rémond.

Keywords: geometry; asymptotic slopes; minima asymptotic; successive minima; slopes arakelov

Journal Title: Compositio Mathematica
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.