This paper is devoted to investigating the relation between Hadamard-type fractional derivatives and finite part integrals in Hadamard sense; that is to say, the Hadamard-type fractional derivative of a given… Click to show full abstract
This paper is devoted to investigating the relation between Hadamard-type fractional derivatives and finite part integrals in Hadamard sense; that is to say, the Hadamard-type fractional derivative of a given function can be expressed by the finite part integral of a strongly singular integral, which actually does not exist. Besides, our results also cover some fundamental properties on absolutely continuous functions, and the logarithmic series expansion formulas at the right end point of interval for functions in certain absolutely continuous spaces.
               
Click one of the above tabs to view related content.