This paper presents an efficient numerical method for solving the distributed fractional differential equations (FDEs). The suggested framework is based on a hybrid of block-pulse functions and Taylor polynomials. For… Click to show full abstract
This paper presents an efficient numerical method for solving the distributed fractional differential equations (FDEs). The suggested framework is based on a hybrid of block-pulse functions and Taylor polynomials. For the first time, the Riemann–Liouville fractional integral operator for the hybrid of block-pulse functions and Taylor polynomials has been derived directly and without any approximations. By taking into account the property of this operator, the problem under consideration is converted into a system of algebraic equations. The present method can be applied to both linear and nonlinear distributed FDEs. Easy implementation, simple operations, and accurate solutions are the essential features of the proposed hybrid functions. Illustrative examples are examined to demonstrate the performance and effectiveness of the developed approximation technique, and a comparison is made with the existing results.
               
Click one of the above tabs to view related content.