LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Variable Stiffness Mechanism for Suppressing Unintended Forces in Physical Human–Robot Interaction

This paper presents the design of a two-degrees-of-freedom (DoFs) variable stiffness mechanism and demonstrates how its adjustable compliance can enhance the robustness of physical human–robot interaction. Compliance on the grasp… Click to show full abstract

This paper presents the design of a two-degrees-of-freedom (DoFs) variable stiffness mechanism and demonstrates how its adjustable compliance can enhance the robustness of physical human–robot interaction. Compliance on the grasp handle is achieved by suspending it in between magnets in preloaded repelling configuration to act as nonlinear springs. By adjusting the air gaps between the outer magnets, the stiffness of the mechanism in each direction can be adjusted independently. Moreover, the capability of the proposed design in suppressing unintended interaction forces is evaluated in two different experiments. In the first experiment, improper admittance controller gain leads to unstable interaction, whereas in the second case, high-frequency involuntary forces are caused by the tremor.

Keywords: physical human; variable stiffness; interaction; stiffness mechanism; human robot

Journal Title: Journal of Mechanisms and Robotics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.