Laminar natural convection heat transfer from vertical 7 × 7 rod bundle in liquid sodium was numerically analyzed to optimize the thermal–hydraulic design for the bundle geometry with equilateral square array (ESA). The… Click to show full abstract
Laminar natural convection heat transfer from vertical 7 × 7 rod bundle in liquid sodium was numerically analyzed to optimize the thermal–hydraulic design for the bundle geometry with equilateral square array (ESA). The unsteady laminar three-dimensional basic equations for natural convection heat transfer caused by a step heat flux were numerically solved until the solution reaches a steady-state. The code of the parabolic hyperbolic or elliptic numerical integration code series (PHOENICS) was used for the calculation considering the temperature dependence of thermophysical properties concerned. The 7 × 7 heated rods for diameter (D = 0.0076 m), length (L = 0.2 m) and L/D (=26.32) were used in this work. The surface heat fluxes for each cylinder, which was uniformly heated along the length, were equally given for a modified Rayleigh number, (Raf,L)ij and (Raf,L)Nx×Ny,S/D, ranging from 3.08 × 104 to 4.28 × 107 (q = 1 × 104∼7 × 106 W/m2) in liquid temperature (TL = 673.15 K). The values of ratio of the diagonal center-line distance between rods for bundle geometry to the rod diameter (S/D) for vertical 7 × 7 rod bundle were ranged from 1.8 to 6 on the bundle geometry with ESA. The spatial distribution of average Nusselt numbers for a vertical single cylinder of a rod bundle, (Nuav)ij, and average Nusselt numbers for a vertical rod bundle, (Nuav,B)Nx×Ny,S/D, were clarified. The average values of Nusselt number, (Nuav)ij and (Nuav,B)Nx×Ny,S/D, for the bundle geometry with various values of S/D were calculated to examine the effect of array size, bundle geometry, S/D, (Raf,L)ij and (Raf,L)Nx×Ny,S/D on heat transfer. The bundle geometry for the higher (Nuav,B)Nx×Ny,S/D value under the condition of S/D = constant was examined. The general correlations for natural convection heat transfer from a vertical Nx×Ny rod bundle with the ESA and equilateral triangle array (ETA), including the effects of array size, (Raf,L)Nx×Ny,S/D and S/D were derived. The correlations for vertical Nx×Ny rod bundles can describe the theoretical values of (Nuav,B)Nx×Ny,S/D for each bundle geometry in the wide analytical range of S/D (=1.8–6) and the modified Rayleigh number ((Raf,L)Nx×Ny,S/D = 3.08 × 104 to 4.28 × 107) within −9.49 to 10.6% differences.
               
Click one of the above tabs to view related content.