LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boundary Control for a Rigid-Flexible Manipulator With Input Constraints Based on Ordinary Differential Equations–Partial Differential Equations Model

Photo from wikipedia

In this paper, the dynamic model is established for the two-link rigid-flexible manipulator, which is represented by nonlinear ordinary differential equations–partial differential equations (ODEs–PDEs). Based on the nonlinear ODE–PDE model,… Click to show full abstract

In this paper, the dynamic model is established for the two-link rigid-flexible manipulator, which is represented by nonlinear ordinary differential equations–partial differential equations (ODEs–PDEs). Based on the nonlinear ODE–PDE model, the boundary control strategy is designed to drive the manipulator to follow a given trajectory and eliminate the vibration simultaneously. Considering actuators saturation, smooth hyperbolic tangent function is introduced for dealing with control input constraints problem. It has been rigorously proved that the nonlinear closed-loop system is asymptotically stable by using LaSalle's invariance principle. Simulation results show that the proposed controller is effective.

Keywords: ordinary differential; flexible manipulator; control; manipulator; rigid flexible; differential equations

Journal Title: Journal of Computational and Nonlinear Dynamics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.