LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Ex Vivo Validation of Novel Force-Sensing Neochordae for Measuring Chordae Tendineae Tension in the Mitral Valve Apparatus Using Optical Fibers With Embedded Bragg Gratings

Photo by cedric from unsplash

Abstract Few technologies exist that can provide quantitative data on forces within the mitral valve apparatus. Marker-based strain measurements can be performed, but chordal geometry and restricted optical access are… Click to show full abstract

Abstract Few technologies exist that can provide quantitative data on forces within the mitral valve apparatus. Marker-based strain measurements can be performed, but chordal geometry and restricted optical access are limitations. Foil-based strain sensors have been described and work well, but the sensor footprint limits the number of chordae that can be measured. We instead utilized fiber Bragg grating (FBG) sensors—optical strain gauges made of 125 μm diameter silica fibers—to overcome some limitations of previous methods of measuring chordae tendineae forces. Using FBG sensors, we created a force-sensing neochord (FSN) that mimics the natural shape and movement of native chordae. FBG sensors reflect a specific wavelength of light depending on the spatial period of gratings. When force is applied, the gratings move relative to one another, shifting the wavelength of reflected light. This shift is directly proportional to force applied. The FBG sensors were housed in a protective sheath fashioned from a 0.025 in. flat coil, and attached to the chordae using polytetrafluoroethylene suture. The function of the force-sensing neochordae was validated in a three-dimensional (3D)-printed left heart simulator, which demonstrated that FBG sensors provide highly sensitive force measurements of mitral valve chordae at a temporal resolution of 1000 Hz. As ventricular pressures increased, such as in hypertension, chordae forces also increased. Overall, FBG sensors are a viable, durable, and high-fidelity sensing technology that can be effectively used to measure mitral valve chordae forces and overcome some limitations of other such technologies.

Keywords: fbg sensors; force sensing; chordae; mitral valve; force

Journal Title: Journal of Biomechanical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.