LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oct-based Modeling of Stent Deployment in Heavily Calcified Coronary Lesion.

Photo by juanencalada from unsplash

In this work, a heavily calcified coronary artery model was reconstructed from the optical coherence tomography (OCT) images to investigate the impact of calcification characteristics on the stenting outcomes. The… Click to show full abstract

In this work, a heavily calcified coronary artery model was reconstructed from the optical coherence tomography (OCT) images to investigate the impact of calcification characteristics on the stenting outcomes. The calcification was quantified at various cross sections in terms of angle, maximum thickness and area. The stent deployment procedure, including the crimping, expansion and recoil, was implemented. The influence of calcification characteristics on stent expansion, malapposition and lesion mechanics were characterized. Results have shown that the minimal lumen area following stenting occurred at the cross section with the greatest calcification angle. The calcification angle constricted the stretchability of the lesion and thus resulted in a small lumen area. The maximum principal strain and von Mises stress distribution patterns in both the fibrotic tissue and artery were consistent with the calcification profiles. The radially projected region of the calcification tends to have less strain and stress. The peak strain and stress of the fibrotic tissue occurred near the interface with the calcification. It is also the region with a high risk of tissue dissection and struts malapposition. In addition, the superficial calcification with a large angle aggregated the malapposition at the middle of the calcification arc. These detailed mechanistic quantifications could be used to provide a fundamental understanding of the role of calcification in stent expansions, as well as to exploit their potential for enhanced pre- and post- stent strategies.

Keywords: calcified coronary; heavily calcified; oct based; calcification; stent deployment; lesion

Journal Title: Journal of biomechanical engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.