LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast Neutron Irradiation Optimization of Thorium-Fueled SCWR Reactor Pressure Vessel

Photo from wikipedia

Fast neutron irradiation causes embrittlement of the reactor pressure vessel (RPV) material; therefore, it may end operation life before design lifetime. Well-known method to recuperate crystal lattice dislocations is annealing.… Click to show full abstract

Fast neutron irradiation causes embrittlement of the reactor pressure vessel (RPV) material; therefore, it may end operation life before design lifetime. Well-known method to recuperate crystal lattice dislocations is annealing. In the current version of thorium fueled supercritical water-cooled reactor (SCWR) design proposed by the Institute of Nuclear Technology at Budapest University of Technology and Economics (BME NTI), the supercritical fluid flows upward between the core barrel and the inner surface of the RPV thereby, the coolant would keep the RPV's temperature at ∼500 °C. This reverse coolant flow direction would decrease the embrittlement of RPV by constant annealing. To minimize the fast neutron flux increase, a relatively thin shielding connected to the inner surface of the barrel could be used. This presents fast neutron irradiation analysis, performed for different settings of the shielding to reduce fast neutron flux reaching the inner surface of RPV.

Keywords: fast neutron; reactor pressure; pressure vessel; neutron irradiation

Journal Title: Journal of Nuclear Engineering and Radiation Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.