LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Compact Algebraic Asymptotes for Small and Large Time Surface Temperatures for Regular Solid Bodies Heated With Uniform Heat Flux: Scrutiny of New Critical Fourier Numbers

Photo from wikipedia

The alternate infinite series at “small time” have been used to analyze the time variation of surface temperatures (ϕs) in regular solid bodies heated with uniform heat flux. In this… Click to show full abstract

The alternate infinite series at “small time” have been used to analyze the time variation of surface temperatures (ϕs) in regular solid bodies heated with uniform heat flux. In this way, compact algebraic asymptotes are successfully retrieved for ϕs in a plate, cylinder, and sphere in the “small time” sub-domain extending from 0 to the critical dimensionless time or critical Fourier number. For the “large time” sub-domain, the exact solution is approximated in two ways: with the “one-term” series and with the simple asymptotes corresponding to extreme “large time” conditions. Maximum relative errors of 1.23%, 6.24%, and 0.96% in ϕs for the plate, cylinder, and sphere are τcr obtained, respectively, with the “small time”—“large time” approximation using a traditional approach to fix the τcr value. An alternative approach to set the τcr is proposed to minimize the maximum relative error of the approximated solutions so that values of 1.19%, 3.93%, and 0.16% are then obtained for the plate, cylinder, and sphere, respectively, with the “small time”—“large time” approximation. For the “small time”—“one-term” approximation maximum relative errors of 0.024%, 1.33%, and 0.004% for the plate, cylinder, and sphere are obtained, respectively, with this approach.

Keywords: regular solid; surface temperatures; time; temperatures regular; small time; large time

Journal Title: Journal of Thermal Science and Engineering Applications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.