LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Human Temporomandibular Joint Motion: A Synthesis Approach for Designing a Six-Bar Kinematic Simulator

Photo from wikipedia

The human earcanal can accommodate several types of in-ear devices including hearing aids, earphones, hearing protectors, and earplugs. This canal-type home has a neighbor called the temporomandibular joint (TMJ) whose… Click to show full abstract

The human earcanal can accommodate several types of in-ear devices including hearing aids, earphones, hearing protectors, and earplugs. This canal-type home has a neighbor called the temporomandibular joint (TMJ) whose movements slightly deform the shape of the earcanal. While these cyclic deformations can influence the positioning, comfort, and functioning of ear-fitted devices, they can also provide a significant amount of energy to harvest. Given their importance, the TMJ movements and earcanal deformations have been well studied. However, their mutual actions are still not fully understood. This paper presents the development of a six-bar kinematic TMJ simulator capable of replicating the complicated motion of the jaw. The development relies on a twophase mechanism design algorithm to numerically optimize and analytically synthesize linkage mechanisms for which the classical optimization approaches cannot return a converged solution. The proposed algorithm enables the design of a kinematic simulator to generate the TMJ path with an average error as low as 1.65% while respecting all the hinge-axis parameters of the jaw. This algorithm can be subsequently used to solve nonlinear complex linkage synthesis problems, and ultimately, the developed kinematic simulator can be used to further investigate TMJā€“earcanal interactions. [DOI: 10.1115/1.4050828]

Keywords: bar kinematic; kinematic simulator; simulator; temporomandibular joint; six bar

Journal Title: Journal of Mechanisms and Robotics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.