LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bone Ingrowth Around an Uncemented Femoral Implant Using Mechanoregulatory Algorithm: A Multiscale Finite Element Analysis.

Photo from wikipedia

The primary fixation and long-term stability of a cementless femoral implant depend on bone ingrowth within the porous coating. Although attempts were made to quantify the peri-implant bone ingrowth using… Click to show full abstract

The primary fixation and long-term stability of a cementless femoral implant depend on bone ingrowth within the porous coating. Although attempts were made to quantify the peri-implant bone ingrowth using the finite element (FE) analysis and mechanoregulatory principles, the tissue differentiation patterns on a porous-coated hip stem have scarcely been investigated. The objective of this study is to predict the spatial distribution of evolutionary bone ingrowth around an uncemented hip stem, using a 3D multiscale mechanobiology based numerical framework. Multiple load cases representing a variety of daily living activities, including walking, stair climbing, sitting down and standing up from a chair, were used as applied loading conditions. The study accounted for the local variations in host bone material properties and implant-bone relative displacements of the macroscale implanted FE model, in order to predict bone ingrowth in microscale representative volume elements (RVEs) of twelve interfacial regions. In majority RVEs, 20-70% bone tissue (immature and mature) was predicted after two months, contributing towards a progressive increase in average Young's modulus (1200-3000 MPa) of the inter-bead tissue layer. Higher bone ingrowth (mostly greater than 60%) was predicted in the antero-lateral regions of the implant, as compared to the postero-medial side (20-50%). New bone tissue was formed deeper inside the inter-bead spacing, adhering to the implant surface. The study helps to gain an insight into the degree of osseointegration of a porous-coated femoral implant.

Keywords: finite element; femoral implant; element analysis; bone; bone ingrowth

Journal Title: Journal of biomechanical engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.