LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Construction of Biologically Relevant Fiber-Reinforced Hydrogel Geometries Using Air-Assisted Dual-Polarity Electrospinning.

Photo from wikipedia

Fiber-reinforced hydrogels are a class of soft composite materials that has seen increased use across a wide variety of biomedical applications. However, existing fabrication techniques for these hydrogels are unable… Click to show full abstract

Fiber-reinforced hydrogels are a class of soft composite materials that has seen increased use across a wide variety of biomedical applications. However, existing fabrication techniques for these hydrogels are unable to realize biologically relevant macro/meso-scale geometries. To address this limitation, this paper presents a novel air-assisted, dual-polarity electrospinning printhead that converges high-strength electric fields, with low velocity air flow to remove the collector dependency seen with traditional far-field electrospinning setups. The use of this printhead, in conjunction with different configurations of deformable collection templates has resulted in the production of three classes of fiber-reinforced hydrogel prototype geometries, viz. (i) tubular geometries with bifurcations and meso-scale texturing; (ii) hollow, non-tubular geometries with single and dual-entrances; and (iii) 3D printed flat geometries with varying fiber density. All three classes of prototype geometries were mechanically characterized to have properties that were in line with those observed in living soft tissues. With the realization of this printhead, biologically relevant macro/meso-scale geometries can be realized using fiber-reinforced hydrogels to aid a wide array of biomedical applications.

Keywords: fiber reinforced; biologically relevant; fiber; air assisted; assisted dual

Journal Title: Journal of biomechanical engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.