LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Investigation of Cross-Flow Water Cooling Towers

Photo from wikipedia

In this study, the performance of the forced cross-flow water cooling tower was investigated with the ANSYS CFX program. The geometric dimensions and boundary condition values of the cooling towers… Click to show full abstract

In this study, the performance of the forced cross-flow water cooling tower was investigated with the ANSYS CFX program. The geometric dimensions and boundary condition values of the cooling towers in the study were taken to be close to the real values. The effect of air velocity, water droplet diameter and inlet water temperature change according to the temperature of the water coming out of the 2m wide, 2m long and 3m high cooling tower was investigated. For the cooling tower, data values suitable for design are selected. The study used air velocities of 2 m/s, 4 m/s, 6 m/s, and 8 m/s, water droplet diameters of 0.01, 0.008, 0.005, and 0.001 m, and inlet water temperatures of 306.15, 309.15, 311.15, and 313.15 K). In addition, the relationship between cooling range and air velocity for mass flow values of different process waters was also investigated. As a result of the study, it was observed that the process leaving water temperatures decreased with the increase of air velocities, but the cooling range increased. A similar situation was observed with the reduction of water droplet diameters. However, it has been observed that when the inlet water temperatures are increased, the outlet process water temperatures and the cooling interval also increase.

Keywords: cross flow; water; flow; flow water; cooling towers; water cooling

Journal Title: Journal of Thermal Science and Engineering Applications
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.