LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Al-rich AlGaN based transistors

Photo from wikipedia

Research results for AlGaN-channel transistors are reviewed as they have progressed from low Al-content and long-channel devices to Al-rich and short-channel RF devices. Figure of merit (FOM) analysis shows encouraging… Click to show full abstract

Research results for AlGaN-channel transistors are reviewed as they have progressed from low Al-content and long-channel devices to Al-rich and short-channel RF devices. Figure of merit (FOM) analysis shows encouraging comparisons relative to today’s state-of-the-art GaN devices for high Al-content and elevated temperatures. Critical electric field (EC), which fuels the AlGaN transistor FOM for high Al-composition, is not measured directly, but average gate-drain electric field at breakdown is substantially better in multiple reported AlGaN-channel devices compared to GaN. Challenges for AlGaN include the constraints arising from relatively low room temperature mobility dominated by ternary alloy scattering and the difficulty of making low-resistivity Ohmic contacts to high Al-content materials. Nevertheless, considerable progress has been made recently in the formation of low-resistivity Ohmic contacts to Al-rich AlGaN by using reverse compositional grading in the semiconductor, whereby a contact to a lower-Al alloy (or even to GaN) is made. Specific contact resistivity (ρc) approaching ρc ∼ 2 × 10−6 Ω cm2 to AlGaN devices with 70% Al-content in the channel has been reported. Along with scaling of the channel length and tailoring of the threshold voltage, this has enabled a dramatic increase in the current density, which has now reached 0.6 A/mm. Excellent ION/IOFF current ratios have been reported for Schottky-gated structures, in some cases exceeding 109. Encouraging RF performance in Al-rich transistors has been reported as well, with fT and fmax demonstrated in the tens of gigahertz range for devices with less than 150 nm gates. Al-rich transistors have also shown lesser current degradation over temperature than GaN in extreme high-temperature environments up to 500 °C, while maintaining ION/IOFF ratios of ∼106 at 500 °C. Finally, enhancement-mode devices along with initial reliability and radiation results have been reported for Al-rich AlGaN transistors. The Al-rich transistors promise to be a very broad and exciting field with much more progress expected in the coming years as this technology matures.

Keywords: algan based; channel devices; rich algan; transistors rich; based transistors; rich transistors

Journal Title: Journal of Vacuum Science and Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.