LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibition of B-cell lymphoma 2 family proteins alters optical redox ratio, mitochondrial polarization, and cell energetics independent of cell state

Photo by nci from unsplash

Abstract. Significance: The optical redox ratio (ORR) [autofluorescence intensity of the reduced form of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H)/flavin adenine dinucleotide (FAD)] provides a label-free method to quantify cellular metabolism.… Click to show full abstract

Abstract. Significance: The optical redox ratio (ORR) [autofluorescence intensity of the reduced form of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H)/flavin adenine dinucleotide (FAD)] provides a label-free method to quantify cellular metabolism. However, it is unclear whether changes in the ORR with B-cell lymphoma 2 (Bcl-2) family protein inhibition are due to metabolic stress alone or compromised cell viability. Aim: Determine whether ABT-263 (navitoclax, Bcl-2 family inhibitor) changes the ORR due to changes in mitochondrial function that are independent of changes in cell viability. Approach: SW48 colon cancer cells were used to investigate changes in ORR, mitochondrial membrane potential, oxygen consumption rates, and cell state (cell growth, viability, proliferation, apoptosis, autophagy, and senescence) with ABT-263, TAK-228 [sapanisertib, mammalian target of rapamycin complex 1/2 (mTORC 1/2) inhibitor], and their combination at 24 h. Results: Changes in the ORR with Bcl-2 inhibition are driven by increases in both NAD(P)H and FAD autofluorescence, corresponding with increased basal metabolic rate and increased mitochondrial polarization. ABT-263 treatment does not change cell viability or induce autophagy but does induce a senescent phenotype. The metabolic changes seen with ABT-263 treatment are mitigated by combination with mTORC1/2 inhibition. Conclusions: The ORR is sensitive to increases in mitochondrial polarization, energetic state, and cell senescence, which can change independently from cell viability.

Keywords: cell; state; inhibition; family; mitochondrial polarization

Journal Title: Journal of Biomedical Optics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.