LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective deep ensemble hashing for open-set palmprint recognition

Abstract. Recently, palmprint recognition has made huge progress and attracted the attention of more and more researchers. However, current research rarely involves open-set palmprint recognition. We proposed deep ensemble hashing… Click to show full abstract

Abstract. Recently, palmprint recognition has made huge progress and attracted the attention of more and more researchers. However, current research rarely involves open-set palmprint recognition. We proposed deep ensemble hashing (DEH) for open-set palmprint recognition. Based on the online gradient boosting model, we trained multiple learners in DEH, which focus on identifying different samples. In order to increase the diversity between learners, activation loss and adversarial loss were introduced. Through minimizing activation loss, the neurons of different learners restrained each other, and through adversarial loss, the optimal distance between the features extracted by different learners was obtained. Palmprint identification and verification experiments were performed on PolyU multispectral database and our self-built databases. The results show the effectiveness of DEH in deal with open-set palmprint recognition. Compared to baseline models, DEH increased the recognition accuracy by up to 6.67% and reduced the equal error rate by up to 3.48%.

Keywords: deep ensemble; set palmprint; open set; palmprint recognition; recognition

Journal Title: Journal of Electronic Imaging
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.