Abstract. Image encryption plays an essential role in the community of image security. Most existing image encryption approaches adopt a permutation–diffusion scheme to permute pixel positions and change pixel values… Click to show full abstract
Abstract. Image encryption plays an essential role in the community of image security. Most existing image encryption approaches adopt a permutation–diffusion scheme to permute pixel positions and change pixel values separately. One limitation of this scheme is that it has a high risk of being cracked. To solve this problem, we propose an approach that jointly permutates and diffuses (JPD) the pixels in a color image for encryption. First, a 4D hyperchaotic system with two positive Lyapunov exponents is used to generate a sequence for almost all encryption procedures. To enhance security, the plain image’s information is introduced to the hyperchaotic system’s initial parameters. Then, the hyperchaotic sequence is used to permute and diffuse the pixels in images jointly. More specifically, two index matrices that determine which pixels will be permuted and diffused and one mask matrix that determines how the pixels will be diffused are generated by the hyperchaotic sequence. We test the proposed JPD with several popular images. Experimental results and security analysis demonstrate that the JPD is capable of resisting various types of attacks. Moreover, the JPD can accelerate the encryption process. All these indicate that the JPD is effective and efficient for color image encryption.
               
Click one of the above tabs to view related content.