LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Visual domain knowledge-based multimodal zoning for textual region localization in noisy historical document images

Photo from wikipedia

Abstract. Document layout analysis, or zoning, is important for textual content analysis such as optical character recognition. Zoning document images such as digitized historical newspaper pages are challenging due to… Click to show full abstract

Abstract. Document layout analysis, or zoning, is important for textual content analysis such as optical character recognition. Zoning document images such as digitized historical newspaper pages are challenging due to noise and quality of the document images. Recently, effective data-driven approaches, such as leveraging deep learning, have been proposed, albeit with the concern of requiring larger training data and thus incurring additional cost of ground truthing. We propose a zoning solution by incorporating a knowledge-driven document representation, gravity map, into a multimodal deep learning framework to reduce the amount of time and data required for training. We first generate a gravity map for each image, considering the centroid distance and area between a cell in a Voronoi tessellation and its content to encode visual domain knowledge of a zoning task. Second, we inject the gravity maps into a deep convolution neural network (DCNN) during training, as an additional modality to boost performance. We report on two investigations using two state-of-the-art DCNN architectures and three datasets: two sets of historical newspapers and a set of born-digital contemporary documents. Evaluations show that our solution achieved comparable segmentation accuracy using fewer training epochs and less training data compared to a naïve training scheme.

Keywords: domain knowledge; visual domain; document images; document

Journal Title: Journal of Electronic Imaging
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.