LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images

Photo from wikipedia

Abstract. We develop neural-network-based methods for classifying plaque types in clinical intravascular optical coherence tomography (IVOCT) images of coronary arteries. A single IVOCT pullback can consist of >500 microscopic-resolution images,… Click to show full abstract

Abstract. We develop neural-network-based methods for classifying plaque types in clinical intravascular optical coherence tomography (IVOCT) images of coronary arteries. A single IVOCT pullback can consist of >500 microscopic-resolution images, creating both a challenge for physician interpretation during an interventional procedure and an opportunity for automated analysis. In the proposed method, we classify each A-line, a datum element that better captures physics and pathophysiology than a voxel, as a fibrous layer followed by calcification (fibrocalcific), a fibrous layer followed by a lipidous deposit (fibrolipidic), or other. For A-line classification, the usefulness of a convolutional neural network (CNN) is compared with that of a fully connected artificial neural network (ANN). A total of 4469 image frames across 48 pullbacks that are manually labeled using consensus labeling from two experts are used for training, evaluation, and testing. A 10-fold cross-validation using held-out pullbacks is applied to assess classifier performance. Noisy A-line classifications are cleaned by applying a conditional random field (CRF) and morphological processing to pullbacks in the en-face view. With CNN (ANN) approaches, we achieve an accuracy of 77.7  %    ±  4.1  %   (79.4  %    ±  2.9  %  ) for fibrocalcific, 86.5  %    ±  2.3  %   (83.4  %    ±  2.6  %  ) for fibrolipidic, and 85.3  %    ±  2.5  %   (82.4  %    ±  2.2  %  ) for other, across all folds following CRF noise cleaning. The results without CRF cleaning are typically reduced by 10% to 15%. The enhanced performance of the CNN was likely due to spatial invariance of the convolution operation over the input A-line. The predicted en-face classification maps of entire pullbacks agree favorably to the annotated counterparts. In some instances, small error regions are actually hard to call when re-examined by human experts. Even in worst-case pullbacks, it can be argued that the results will not negatively impact usage by physicians, as there is a preponderance of correct calls.

Keywords: optical coherence; classification; line; intravascular optical; coherence tomography

Journal Title: Journal of Medical Imaging
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.