LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Segmentation and classification of consumer-grade and dermoscopic skin cancer images using hybrid textural analysis

Photo by officestock from unsplash

Abstract. We present a skin lesion diagnosis system that segments the lesion and classifies it as melanoma or nonmelanoma. The proposed system is capable to deal with skin lesion images… Click to show full abstract

Abstract. We present a skin lesion diagnosis system that segments the lesion and classifies it as melanoma or nonmelanoma. The proposed system is capable to deal with skin lesion images acquired by standard consumer-grade cameras and dermascopes. In order to suppress the image artifacts and enhance the lesion area, we propose an illumination correction strategy which consists of filtering in frequency and spatial domains. We introduce a hybrid model for lesion segmentation, which forms texture segments of the illumination corrected image using a factorization technique. Then based on the texture distinctiveness of the corrected and the texture segmented images, the saliency maps are computed, which are combined to decide lesion texture segments. In order to classify the segmented lesion, we propose a multimodal feature set composed of texture-, shape-, and color-based features. Classification performance of the multimodal features is evaluated using support vector machine, decision trees, and Mahalanobis distance classifiers. We evaluate the performance of the proposed system qualitatively and quantitatively. For the consumer-grade camera skin images dataset and ISIC 2017 dermascopic images dataset, the average segmentation accuracies are 98.4% and 95.4%, respectively; the classification accuracies are 98.06% and 93.95%, respectively.

Keywords: lesion; segmentation; consumer grade; skin

Journal Title: Journal of Medical Imaging
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.