LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient procedure planning for comprehensive lymph node staging bronchoscopy

Photo from wikipedia

Abstract. Purpose: For a patient at risk of having lung cancer, accurate disease staging is vital as it dictates disease prognosis and treatment. Accurate staging requires a comprehensive sampling of… Click to show full abstract

Abstract. Purpose: For a patient at risk of having lung cancer, accurate disease staging is vital as it dictates disease prognosis and treatment. Accurate staging requires a comprehensive sampling of lymph nodes within the chest via bronchoscopy. Unfortunately, physicians are generally unable to plan and perform sufficiently comprehensive procedures to ensure accurate disease staging. We propose a method for planning comprehensive lymph node staging procedures. Approach: Drawing on a patient’s chest CT scan, the method derives a multi-destination tour for efficient navigation to a set of lymph nodes. We formulate the planning task as a traveling salesman problem. To solve the problem, we apply the concept of ant colony optimization (ACO) to derive an efficient airway tour connecting the target nodes. The method has three main steps: (1) CT preprocessing, to define important chest anatomy; (2) graph and staging zone construction, to set up the necessary data structures and clinical constraints; and (3) tour computation, to derive the staging plan. The plan conforms to the world standard International Association for the Study of Lung Cancer (IASLC) lymph node map and recommended clinical staging guidelines. Results: Tests with a patient database indicate that the method derives optimal or near-optimal tours in under a few seconds, regardless of the number of target lymph nodes (mean tour length = 1.4% longer than the optimum). A brute force optimal search, on the other hand, generally cannot reach a solution in under 10 min. for patients exhibiting >16 nodes, and other methods provide poor solutions. We also demonstrate the method’s utility in an image-guided bronchoscopy system. Conclusions: The method provides an efficient computational approach for planning a comprehensive lymph node staging bronchoscopy. In addition, the method shows promise for driving an image-guided bronchoscopy system or robotics-assisted bronchoscopy system tailored to lymph node staging.

Keywords: node staging; comprehensive lymph; planning comprehensive; lymph node; lymph

Journal Title: Journal of Medical Imaging
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.