LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of hydrothermal alteration zones of the Baogutu porphyry copper deposits in northwest China using ASTER data

Photo from wikipedia

Abstract. Remote sensing technology plays a vital role in the initial stages of ore deposits exploration, with special significance in arid and semiarid regions. Advanced spaceborne thermal emission and reflection… Click to show full abstract

Abstract. Remote sensing technology plays a vital role in the initial stages of ore deposits exploration, with special significance in arid and semiarid regions. Advanced spaceborne thermal emission and reflection radiometer (ASTER) creates opportunities for geologists and many researchers to study the extraction of hydrothermal alterations of the porphyry copper and epithermal gold deposits. ASTER data were used to map distribution of hydrothermal alteration of deposits in the Baogutu region which is located in western Junggar, Xinjiang, China, including Baogutu II and Baogutu V deposits. Band ratio logical operator (BRLO), principal component analysis (PCA), mixture-tuned matched-filtering (MTMF), and constrained energy minimization (CEM) techniques were used for detailed hydrothermal alteration mapping. The alteration zones were identified using BRLO and PCA. The minerals subject to alteration were extracted by MTMF and CEM. The results were validated through field observation, spectral measurements, and petrographic studies. By comparing the extraction results and accuracy rates of four methods, CEM boasts the highest accuracy and identifies the altered minerals corresponding to three types of alterations at accuracy of over 80%. The identifying result of CEM method indicates that the prospect areas that were located in the southeast part of the Baogutu II rocks and in the southwest part of the Baogutu V rocks are valuable for further exploration.

Keywords: aster data; alteration; alteration zones; porphyry copper; hydrothermal alteration

Journal Title: Journal of Applied Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.