Abstract. The accuracy of differential interferometric synthetic aperture radar (DInSAR) in monitoring the ground subsidence is a major challenge to be addressed urgently. Using the repeat track DInSAR and GIS… Click to show full abstract
Abstract. The accuracy of differential interferometric synthetic aperture radar (DInSAR) in monitoring the ground subsidence is a major challenge to be addressed urgently. Using the repeat track DInSAR and GIS spatial analysis tools, eight C-band Sentinel-1A SAR images of the Guotun coal mine (China) were processed to determine the mining subsidence from November 27, 2015 to July 24, 2016. The mining data of 13 working faces and the DInSAR- and leveling-monitored results were compared. A method was proposed to solve the problem of time inconsistency between DInSAR- and leveling-monitored results. The location, spatial distribution, scope, and variations of mining subsidence monitored by Sentinel-1A repeat track DInSAR were consistent with the mining progress of the working faces. The accuracy of the DInSAR-monitored subsidence values was directly related to the coherence of the subsidence zones, and the absolute difference from the leveling-monitored values was small at the subsidence edge but large at the subsidence center.
               
Click one of the above tabs to view related content.