LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Scale factor correction for Gaussian beam truncation in second moment beam radius measurements

Photo from wikipedia

Abstract. Charged-couple devices (CCD) and complementary metal oxide semiconductor (CMOS) image sensors, in conjunction with the second moment radius analysis method, are effective tools for determining the radius of a… Click to show full abstract

Abstract. Charged-couple devices (CCD) and complementary metal oxide semiconductor (CMOS) image sensors, in conjunction with the second moment radius analysis method, are effective tools for determining the radius of a laser beam. However, the second moment method heavily weights sensor noise, which must be dealt with using a thresholding algorithm and a software aperture. While these noise reduction methods lower the random error due to noise, they simultaneously generate systematic error by truncating the Gaussian beam’s edges. A scale factor that is invariant to beam ellipticity and corrects for the truncation of the Gaussian beam due to thresholding and the software aperture has been derived. In particular, simulations showed an order of magnitude reduction in measured beam radius error when using the scale factor—irrespective of beam ellipticity—and further testing with real beam data demonstrated that radii corrected by the scale factor are independent of the noise reduction parameters. Thus, through use of the scale factor, the accuracy of beam radius measurements made with a CCD or CMOS sensor and the second moment are significantly improved.

Keywords: second moment; scale factor; radius; beam

Journal Title: Optical Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.