LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Frequency downconversion of low-power Raman laser using intracavity difference frequency mixing

Photo from wikipedia

Abstract. We report efficient frequency downconversion of a continuous-wave low-power Raman laser using intracavity difference frequency mixing in a periodically poled lithium niobate (PPLN)-adopted optical parametric oscillator (OPO). The Raman… Click to show full abstract

Abstract. We report efficient frequency downconversion of a continuous-wave low-power Raman laser using intracavity difference frequency mixing in a periodically poled lithium niobate (PPLN)-adopted optical parametric oscillator (OPO). The Raman laser was obtained using a 1060-nm fiber laser and 137-m passive fiber. Its central wavelength was fixed at 1111 nm with the power ranging from 320 mW to 5.984 W. The 1060- and 1111-nm pump beams were incident into the OPO at the same time. The high-power 1060-nm pump beam built parametric oscillation first, and the difference frequency generation (DFG) occurred between the low-power Raman laser and intracavity signal laser. The PPLN temperature was properly controlled at 45°C to ensure both the OPO and DFG processes synchronously satisfy phase matching conditions. Benefiting from intracavity high signal power, the Raman laser was successfully converted to the 3560-nm midinfrared radiation under every investigated pump power level. The maximum 3560-nm idler power reached 1.026 W, indicating a 17.4% pump-to-idler slope efficiency and about 15% optical-to-optical conversion efficiency. The comparative experiments also verified that the phase matching conditions were satisfied maximally at 45°C.

Keywords: power; power raman; frequency; raman laser

Journal Title: Optical Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.