LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of 340-Gbps terrestrial FSO link incorporating spectral-efficient DP-QPSK-PolSK hybrid modulation scheme

Photo by pegazem from unsplash

Abstract. A high-capacity spectral-efficient dual-polarization quadrature phase-shift keying (DP-QPSK)-polarization shift-keying (PolSK) hybrid modulation scheme for terrestrial free-space optics (FSO) transmission link is proposed and investigated. A DP-QPSK signal modulated at… Click to show full abstract

Abstract. A high-capacity spectral-efficient dual-polarization quadrature phase-shift keying (DP-QPSK)-polarization shift-keying (PolSK) hybrid modulation scheme for terrestrial free-space optics (FSO) transmission link is proposed and investigated. A DP-QPSK signal modulated at 300 Gbps and a PolSK signal modulated at 40 Gbps are simultaneously transmitted using a single optical carrier over the FSO link. The proposed link performance is investigated under different weather conditions, where the bit error rate metric is used to evaluate the performance of the PolSK modulated signal and the error vector magnitude parameter is used for the DP-QPSK signal. The FSO link range and the required received power are carefully explored. The conducted numerical simulations of the proposed system showed reliable 340-Gbps data transmission over link ranges varying from 1.6125 to 50 km depending on the weather conditions. The impact of the channel scintillation due to atmospheric turbulence is also investigated. The proposed high-speed FSO transmission system offers a promising solution for high-bandwidth hungry systems used for the internet of things, 5G, and smart cities. It can also be used in developing fronthaul/backhaul links for future wireless networks and optical access networks. The performance of the proposed transmission system is compared with recently published work in the literature.

Keywords: fso link; polsk hybrid; link; spectral efficient; hybrid modulation; gbps

Journal Title: Optical Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.