LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly efficient second-harmonic generation in an electro-optic chiral material using total-internal-reflection-based optical rotation quasi-phase-matching technique

Photo from wikipedia

Abstract. The present work introduces the concept of a total-internal-reflection (TIR)-based optical rotation, quasi-phase-matching (QPM) technique for generating highly efficient second-harmonic optical output in a rectangular slab of magnesium oxide-doped… Click to show full abstract

Abstract. The present work introduces the concept of a total-internal-reflection (TIR)-based optical rotation, quasi-phase-matching (QPM) technique for generating highly efficient second-harmonic optical output in a rectangular slab of magnesium oxide-doped lithium niobate crystal coated with a thin layer of yttrium oxide. Combinational effects of TIR optical rotation QPM and fractional QPM techniques are experienced at certain bounce points inside the slab, thereby enhancing the conversion efficiency. In this analysis, the thin-film is used for controlling the phase-shifts accompanying the propagation of p- and s-polarized light at the slab-film interface during TIR. A conversion efficiency of 32%, corresponding to a second-harmonic wavelength of 532 nm has been observed using computer-aided simulation. Optical losses such as surface roughness, absorption, and interference effect due to the nonlinear law of reflection have also been incorporated.

Keywords: optical rotation; reflection; total internal; phase; second harmonic

Journal Title: Optical Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.