LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast laser soliton mode-locked at 1.5 μm region based on Cr2AlC MAX phase as a saturable absorber

Photo by gretafarnedi from unsplash

Abstract. In this experiment, a passively mode-locked erbium-doped fiber laser was successfully realized by utilizing chromium aluminum carbide (Cr2AlC) MAX phase as a saturable absorber (SA). The Cr2AlC MAX phase… Click to show full abstract

Abstract. In this experiment, a passively mode-locked erbium-doped fiber laser was successfully realized by utilizing chromium aluminum carbide (Cr2AlC) MAX phase as a saturable absorber (SA). The Cr2AlC MAX phase was fabricated by casting method with polyvinyl alcohol to compose a thin film. By a 203-m cavity length, a stable mode-locked laser operating at 1559 nm was achieved at the threshold pump power of 121.69 mW with a pulse width of 4.45 ps and pulse rate of 1 MHz. The pulse energy was 0.91 nJ and output power was 0.91 mW at a maximum pump power of 167 mW. As the cavity length was shortened to 103 m, we observed that pulse width, pulse energy, and output power decreased to 2.5 ps, 1.60 nJ, and 3.02 mW, respectively, while the repetition rate increased to 1.88 MHz at a maximum pump power of 167 mW. To the best of our knowledge, this is the first time utilizing Cr2AlC MAX phase SA to produce the pulse laser in the 1.5-μm region.

Keywords: max phase; cr2alc max; mode locked

Journal Title: Optical Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.