LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multispectral transmission through phoxonic crystal slot-waveguide at midwave infrared frequencies

Photo from wikipedia

Abstract. We design a multispectral transmission waveguide based on phoxonic crystals at midwave infrared (MWIR) frequencies. The phoxonic crystal slot-waveguide architecture is realized using a germanium (Ge)-slot waveguide, surrounded by… Click to show full abstract

Abstract. We design a multispectral transmission waveguide based on phoxonic crystals at midwave infrared (MWIR) frequencies. The phoxonic crystal slot-waveguide architecture is realized using a germanium (Ge)-slot waveguide, surrounded by a supercell array of oxide holes in silicon–germanium (SiGe) membrane tailored photonic and phononic crystal bandgap. The plane wave simulations for both photonic and phononic crystal unit cells were performed to confirm the geometry of the phoxonic supercell. The bandgap analysis shows the capability of the proposed architecture to confine photons of the terahertz frequency range within the slot waveguide by isolating them from the phonons of gigahertz frequency range. The phononic and photonic bandgaps were simultaneously engineered by varying the periodic variation of the density function and dielectric permittivity, respectively. The computational approach shows the suppression in photon-phonon scattering as validated by a uniform transmission of ∼99.8  %   over a broad range of 3 to 5  μm wavelengths. The designed phoxonic crystal waveguide can be fabricated with planar processing technology and used in many applications where multispectral control of mid-IR signals is required.

Keywords: slot waveguide; phoxonic crystal; waveguide; transmission

Journal Title: Optical Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.