Based on the generalized Poiseuille equation modified by a kinetic energy correction, an explicit solution for the time evolution of a liquid column draining under gravity through an exit capillary… Click to show full abstract
Based on the generalized Poiseuille equation modified by a kinetic energy correction, an explicit solution for the time evolution of a liquid column draining under gravity through an exit capillary tube is derived in terms of the Lambert W function. In contrast to the conventional exponential behavior, as implied by the Poiseuille law, a new analytical solution gives a full account for the volumetric flow rate of a fluid through a capillary of any length and improves the precision of viscosity determination. The theoretical consideration may be of interest to students as an example of how implicit equations in the field of physics can be solved analytically using the Lambert function.
               
Click one of the above tabs to view related content.