When an array module measuring three-dimensional sound intensity is employed for detecting the sound source, a compact space usage and small number of sensors are advantageous than the other source… Click to show full abstract
When an array module measuring three-dimensional sound intensity is employed for detecting the sound source, a compact space usage and small number of sensors are advantageous than the other source localization methods. However, because of severe bias errors, it has not been popular. We analyze the major sources of bias estimation error and seek for the compensation method. Spectral bias error is due to the reflected signal from the environment, which is proportional to the difference of distance between direct and reflective paths. Spatial bias error is due to the inhomogeneous directivity of the intensity module stemming from discrete arrangement of sensors on the hypothetical sphere surrounding sensors. Simulation with changing the source direction by 1 deg. in spherical angle can generate an error map for all incidence angles. A measurement is conducted using a tetrahedral intensity module with 30 mm spacing for the compensation of errors. Low pass filtering of the cross spectral density function is u...
               
Click one of the above tabs to view related content.