LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stop Whistling! A Note on Fluid Driven Whistles in Flow Ducts

Photo by yolk_coworking_krakow from unsplash

The generation mechanism and possible counter measures for fluid driven whistles in low Mach number flow duct networks are discussed. The vortex sound model, where unstable shear layers interact with… Click to show full abstract

The generation mechanism and possible counter measures for fluid driven whistles in low Mach number flow duct networks are discussed. The vortex sound model, where unstable shear layers interact with the acoustic field and act as amplifiers under certain boundary conditions, is shown to capture the physics well. Further, for the system to actually whistle, an acoustic feedback to the amplifying shear layer is also needed. The demonstration example in this study is a generalized resonator configuration with annular volumes attached to a straight flow duct via a number of small holes, perforations, around the duct’s circumference. At each hole, a shear layer is formed and the acoustic reflections from the resonator volumes and the up and downstream sides provides a possible feedback to them. The attenuation properties as well as the whistling frequencies at varying inlet mean flow velocities for this system are studied both numerically and experimentally showing that good quality predictive simulations are ...

Keywords: whistling note; whistles flow; driven whistles; fluid driven; stop whistling; note fluid

Journal Title: Journal of the Acoustical Society of America
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.