Gelling colloidal suspensions represent an important class of soft materials. Their mechanical response is characterized by a solid-to-liquid transition at a given shear stress level. Moreover, they often exhibit a… Click to show full abstract
Gelling colloidal suspensions represent an important class of soft materials. Their mechanical response is characterized by a solid-to-liquid transition at a given shear stress level. Moreover, they often exhibit a complex time-dependent rheological behavior known as thixotropy. The viscosity changes find their origin in the microstructure, which depends on flow history. Yet, the structural response of colloidal gels to flow differs fundamentally from most complex fluids, where flow induces orientation. Upon yielding, low to intermediate volume fraction gels break down in a spatially anisotropic way. Bonds in the velocity-velocity gradient plane are broken, whereas microstructural features in other planes are less affected. The subsequent flow-induced microstructural anisotropy is characterized by typical butterfly scattering patterns. However, as yet there was no evidence for the pertinence of this anisotropy for the rheological properties of these systems. In the present work, orthogonal superposition r...
               
Click one of the above tabs to view related content.