LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Effect of Variation of Plyometric Push-Ups on Force-Application Kinetics and Perception of Intensity.

Photo from wikipedia

PURPOSE To examine differences between ground-reaction-force (GRF)-based parameters collected from 5 types of plyometric push-ups. Between-trials reliability and the relationships between parameters were also assessed. METHODS Thirty-seven highly active commando… Click to show full abstract

PURPOSE To examine differences between ground-reaction-force (GRF)-based parameters collected from 5 types of plyometric push-ups. Between-trials reliability and the relationships between parameters were also assessed. METHODS Thirty-seven highly active commando soldiers performed 3 trials of 5 variations of the plyometric push-up in a counterbalanced order: standard countermovement push-up (SCPu), standard squat push-up (SSPu), kneeling countermovement push-up (KCPu), kneeling squat push-up (KSPu), and drop-fall push-up (DFPu). Vertical GRF was measured during these exercises using a portable Kistler force plate. The GRF applied by the hands in the starting position (initial force supported), peak GRF and rate of force development during takeoff, flight time, impact force, and rate of force development impact on landing were determined. RESULTS During standard-position exercises (SCPu and SSPu) the initial force supported and impact force were higher (P < .001) than with kneeling exercises (KCPu, KSPu, and DFPu). The peak GRF and rate of force development during takeoff were higher (P < .001) in the countermovement push-up exercises ([CMP] SCPu, KCPu, and DFPu) than squat push-up exercises ([SP] SSPu and KSPu). Furthermore, the flight time was greater (P < .001) during kneeling exercises than during standard-position exercises. A significant relationship (P < .01) between impact force and the rate of force development impact was observed for CMP and SP exercises (r = .83 and r = .62, respectively). The initial force supported was also negatively related (P < .01) to the flight time for both CMP and SP (r = -.74 and r = -.80, respectively). It was revealed that the initial force supported and the peak GRF during takeoff had excellent reliability; however, other parameters had poor absolute reliability. CONCLUSIONS It is possible to adjust the intensity of plyometric push-up exercises and train athletes' muscle power by correctly interpreting GRF-based parameters. However, caution is required as some parameters had marginal absolute reliability.

Keywords: grf; plyometric push; initial force; force; push ups; push

Journal Title: International journal of sports physiology and performance
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.