LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fatigue Measured in Dynamic Versus Isometric Modes After Trail Running Races of Various Distances.

Photo from wikipedia

PURPOSE Fatigue has previously been investigated in trail running by comparing maximal isometric force before and after the race. Isometric contractions may not entirely reflect fatigue-induced changes, and therefore dynamic… Click to show full abstract

PURPOSE Fatigue has previously been investigated in trail running by comparing maximal isometric force before and after the race. Isometric contractions may not entirely reflect fatigue-induced changes, and therefore dynamic evaluation is warranted. The aim of the present study was to compare the magnitude of the decrement of maximal isometric force versus maximal power, force, and velocity after trail running races ranging from 40 to 170 km. METHODS Nineteen trail runners completed races shorter than 60 km, and 21 runners completed races longer than 100 km. Isometric maximal voluntary contractions (IMVCs) of knee extensors and plantar flexors and maximal 7-second sprints on a cycle ergometer were performed before and after the event. RESULTS Maximal power output (Pmax; -14% [11%], P < .001), theoretical maximum force (F0; -11% [14%], P < .001), and theoretical maximum velocity (-3% [8%], P = .037) decreased significantly after both races. All dynamic parameters but theoretical maximum velocity decreased more after races longer than 100 km than races shorter than 60 km (P < .05). Although the changes in IMVCs were significantly correlated (P < .05) with the changes in F0 and Pmax, reductions in IMVCs for knee extensors (-29% [16%], P < .001) and plantar flexors (-26% [13%], P < .001) were larger (P < .001) than the reduction in Pmax and F0. CONCLUSIONS After a trail running race, reductions in isometric versus dynamic forces were correlated, yet they are not interchangeable because the losses in isometric force were 2 to 3 times greater than the reductions in Pmax and F0. This study also shows that the effect of race distance on fatigue measured in isometric mode is true when measured in dynamic mode.

Keywords: measured dynamic; fatigue measured; running races; versus; force; trail running

Journal Title: International journal of sports physiology and performance
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.