LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acceleration and Jerk After a Jump Stabilization Task in Individuals With and Without Chronic Ankle Instability.

Photo by whereslugo from unsplash

Studies have demonstrated that individuals with chronic ankle instability (CAI) have diminished dynamic stability. Jerk-based measures have been utilized to examine dynamic balance because of their ability to quantify changes… Click to show full abstract

Studies have demonstrated that individuals with chronic ankle instability (CAI) have diminished dynamic stability. Jerk-based measures have been utilized to examine dynamic balance because of their ability to quantify changes in acceleration and may provide an understanding of the postural corrections that occur during stabilizing following a jumping task. The purpose of this study was to compare acceleration and jerk following a jump stabilization task between individuals with CAI and the uninjured controls. Thirty-nine participants volunteered to participate in this case control study. Participants completed a jump stabilization task requiring them to jump off 2 feet, touch a marker set at 50% of their maximal vertical jump height, land on a single limb, and maintain balance for 3 seconds. Acceleration was calculated as the second derivative, and jerk was calculated as the third derivative of the displacement of the resultant vector position. Participants with CAI had greater acceleration (mean difference = 55.6 cm/s2; 95% confidence interval, 10.3 to 100.90; P = .017) and jerk compared with the uninjured controls (mean difference = 1804.5 cm/s3; 95% confidence interval, 98.7 to 3510.3; P = .039). These results suggest that individuals with CAI made faster and more frequent active postural control corrections to regain balance following a jump compared with the uninjured controls.

Keywords: jump stabilization; stabilization task; jerk; acceleration

Journal Title: Journal of applied biomechanics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.