LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lower Limb Movement Pattern Differences Between Males and Females in Squatting and Kneeling.

Photo from wikipedia

Movement pattern differences may contribute to differential injury or disease prevalence between individuals. The purpose of this study was to identify lower limb movement patterns in high knee flexion, a… Click to show full abstract

Movement pattern differences may contribute to differential injury or disease prevalence between individuals. The purpose of this study was to identify lower limb movement patterns in high knee flexion, a risk factor for knee osteoarthritis, and to investigate kinematic differences between males and females, as females typically develop knee osteoarthritis more commonly and severely than males. Lower extremity kinematic data were recorded from 110 participants completing 4 variations of squatting and kneeling. Principal component analysis was used to identify principal movements associated with the largest variability in the sample. Across the tasks, similar principal movements emerged at maximal flexion and during transitions. At maximal flexion, females achieved greater knee flexion, facilitated by a wider base of support, which may alter posterior and lateral tibiofemoral stress. Principal movements also detected differences in movement temporality between males and females. When these temporal differences occur due to alterations in movement velocity and/or acceleration, they may elicit changes in muscle activation and knee joint stress. Movement variability identified in the current study provides a framework for potential modifiable factors in high knee flexion, such as foot position, and suggests that kinematic differences between the sexes may contribute to differences in knee osteoarthritis progression.

Keywords: movement; lower limb; flexion; males females; movement pattern; pattern differences

Journal Title: Journal of applied biomechanics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.