CONTEXT When emphasizing muscular strength during postoperative rehabilitation it is recommended to use a neuromuscular electrical stimulation (NMES) waveform that elicits the greatest muscle force and local metabolic demand that… Click to show full abstract
CONTEXT When emphasizing muscular strength during postoperative rehabilitation it is recommended to use a neuromuscular electrical stimulation (NMES) waveform that elicits the greatest muscle force and local metabolic demand that is also well tolerated. The present investigation examined the effects that 3 different clinically used NMES waveforms had on the electrically elicited force (EEF), local metabolic demand (exercising muscle oxygen saturation [SmO2]), and the subsequent reactive hyperemia response (recovery total hemoglobin concentration [THb]) of the knee extensors. DESIGN Single session repeated-measures design. METHODS EEF, local metabolic demand, and reactive hyperemia responses were measured during and subsequent to 3 NMES waveforms: Russian burst modulated alternating current (RUS), biphasic pulsed current (VMS™), and burst modulated biphasic pulsed current (VMS-Burst™). Exercising SmO2 and recovery THb were assessed noninvasively using a near-infrared spectroscopy sensor placed on the vastus lateralis. Participants completed one set of 10 repetitions of each NMES waveform and were provided with 5 minutes of passive, interset recovery. Two-way, repeated-measures analysis of variance examined if NMES waveform or repetition significantly affected (P < .05) EEF or exercising SmO2. Two-way, repeated-measures analysis of variance examined if NMES waveform or recovery time affected recovery THb. RESULTS VMS™ and VMS-Burst™ yielded higher EEF (F = 11.839, P < .001) and greater local metabolic stress (lower exercising SmO2, F = 13.654, P < .001) compared with RUS. Greater rate of EEF decline throughout the NMES set was observed during RUS (%Δ = -50 [6] %Rep1) compared with VMS-Burst™ (%Δ = -30 [7] %Rep1) and VMS™ (%Δ = -32 [7] %Rep1). VMS™ elicited a higher reactive hyperemia response (higher recovery THb) compared with RUS (F = 3.427, P = .048). CONCLUSIONS The present findings support the use of VMS™ or VMS-Burst™ compared with RUS when promoting muscular strength. In addition, the use of VMS™ might provide a greater blood volume to the target muscle subsequent to NMES contractions compared with RUS.
               
Click one of the above tabs to view related content.