LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of 4 Different Cooldown Strategies on Lower-Leg Temperature, Blood Lactate Concentration, and Fatigue Perception After Intense Running.

CONTEXT Although active recovery (AR) and cold application is recommended, many people take a shower after exercise. Therefore, a direct comparison between a shower and other recommended methods (AR and/or… Click to show full abstract

CONTEXT Although active recovery (AR) and cold application is recommended, many people take a shower after exercise. Therefore, a direct comparison between a shower and other recommended methods (AR and/or cold-water immersion) is necessary. To compare immediate effects of 4 postexercise cooldown strategies after running. DESIGN A crossover design. METHODS Seventeen young, healthy males (23 y; 174 cm; 73 kg) visited on 4 different days and performed a 10-minute intense treadmill run (5 km/h at a 1% incline, then a belt speed of 1 km/h, and an incline of 0.5% were increased every minute). Then, subjects randomly experienced 4 different 30-minute cooldown strategies each session-AR (10-min treadmill walk + 10-min static stretch + 10-min shower), cold-water walk (10-min shower + 20-min walk in cold water), cold-water sit (10-min shower + 20-min sit in cold water), and passive recovery (10-min shower + 20-min passive recovery). Across the cooldown conditions, the water temperatures for immersion and shower were set as 18 °C and 25 °C, respectively. Lower-leg muscle temperature, blood lactate concentration, and fatigue perception were statistically compared (P < .001 for all tests) and effect sizes (ES) were calculated. RESULTS The cold-water walk condition (F135,2928 = 69.29, P < .0001) was the most effective in reducing muscle temperature after running (-11.6 °C, ES = 9.46, P < .0001), followed by the cold-water sit (-8.4 °C, ES = 8.61, P < .0001), passive recovery (-4.5 °C, ES = 4.36, P < .0001), and AR (-4.0 °C, ES = 4.29, P < .0001) conditions. Blood lactate concentration (F6,176 = 0.86, P = .52) and fatigue perception (F6,176 = 0.18, P = .98) did not differ among the 4 conditions. CONCLUSIONS While the effect of lowering the lower-leg temperature was different, the effect of reducing blood lactate concentration and fatigue perception were similar in the 4 cooldown strategies. We suggest selecting the appropriate method while considering the specific goal, available time, facility, and accessibility.

Keywords: cooldown strategies; water; lactate concentration; blood lactate; min; cold water

Journal Title: Journal of sport rehabilitation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.