LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites

Photo by ale_s_bianchi from unsplash

Absorption of light in hybrid perovskite solar cells leads to ultrafast large-amplitude deformations of the inorganic sublattice. Femtosecond resolution electron scattering techniques are applied to resolve the first atomic-scale steps… Click to show full abstract

Absorption of light in hybrid perovskite solar cells leads to ultrafast large-amplitude deformations of the inorganic sublattice. Femtosecond resolution electron scattering techniques are applied to resolve the first atomic-scale steps following absorption of a photon in the prototypical hybrid perovskite methylammonium lead iodide. Following above-gap photoexcitation, we directly resolve the transfer of energy from hot carriers to the lattice by recording changes in the mean square atomic displacements on 10-ps time scales. Measurements of the time-dependent pair distribution function show an unexpected broadening of the iodine-iodine correlation function while preserving the Pb–I distance. This indicates the formation of a rotationally disordered halide octahedral structure developing on picosecond time scales. This work shows the important role of light-induced structural deformations within the inorganic sublattice in elucidating the unique optoelectronic functionality exhibited by hybrid perovskites and provides new understanding of hot carrier—lattice interactions, which fundamentally determine solar cell efficiencies.

Keywords: picosecond rotational; light induced; inorganic sublattice; hybrid perovskites; sublattice; induced picosecond

Journal Title: Science Advances
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.