LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical deformation induces depolarization of neutrophils

Photo from wikipedia

In vivo–mimicking mechanical deformations quickly depolarize neutrophils—a mechanism potentially failing in acute lung injury. The transition of neutrophils from a resting state to a primed state is an essential requirement… Click to show full abstract

In vivo–mimicking mechanical deformations quickly depolarize neutrophils—a mechanism potentially failing in acute lung injury. The transition of neutrophils from a resting state to a primed state is an essential requirement for their function as competent immune cells. This transition can be caused not only by chemical signals but also by mechanical perturbation. After cessation of either, these cells gradually revert to a quiescent state over 40 to 120 min. We use two biophysical tools, an optical stretcher and a novel microcirculation mimetic, to effect physiologically relevant mechanical deformations of single nonadherent human neutrophils. We establish quantitative morphological analysis and mechanical phenotyping as label-free markers of neutrophil priming. We show that continued mechanical deformation of primed cells can cause active depolarization, which occurs two orders of magnitude faster than by spontaneous depriming. This work provides a cellular-level mechanism that potentially explains recent clinical studies demonstrating the potential importance, and physiological role, of neutrophil depriming in vivo and the pathophysiological implications when this deactivation is impaired, especially in disorders such as acute lung injury.

Keywords: induces depolarization; deformation; deformation induces; depolarization neutrophils; mechanical deformation

Journal Title: Science Advances
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.