LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase

Photo by jontyson from unsplash

XFEL and IR analyses suggest that O2 bound at CuB blocks proton backflow for unidirectional H+ transport by water channel closure. Bovine cytochrome c oxidase (CcO), a 420-kDa membrane protein,… Click to show full abstract

XFEL and IR analyses suggest that O2 bound at CuB blocks proton backflow for unidirectional H+ transport by water channel closure. Bovine cytochrome c oxidase (CcO), a 420-kDa membrane protein, pumps protons using electrostatic repulsion between protons transferred through a water channel and net positive charges created by oxidation of heme a (Fea) for reduction of O2 at heme a3 (Fea3). For this process to function properly, timing is essential: The channel must be closed after collection of the protons to be pumped and before Fea oxidation. If the channel were to remain open, spontaneous backflow of the collected protons would occur. For elucidation of the channel closure mechanism, the opening of the channel, which occurs upon release of CO from CcO, is investigated by newly developed time-resolved x-ray free-electron laser and infrared techniques with nanosecond time resolution. The opening process indicates that CuB senses completion of proton collection and binds O2 before binding to Fea3 to close the water channel using a conformational relay system, which includes CuB, heme a3, and a transmembrane helix, to block backflow of the collected protons.

Keywords: cytochrome oxidase; time; channel; time resolved; nanosecond time; release

Journal Title: Science Advances
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.